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ABSTRACT

A large class of biometric template protection algorithms assume

that feature vectors are integer valued. However, biometric data is

generally represented through real-valued feature vectors. There-

fore, secure template constructions are not immediately applicable

when feature vectors are composed of real numbers. We propose a

generic transformation and extend the domain of biometric tem-

plate protection algorithms from integer-valued feature vectors to

real valued feature vectors. We show that our transformation is

accuracy-preserving and verify our theoretical findings by report-

ing the implementation results using a public keystroke dynamics

dataset.
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1 INTRODUCTION

Biometrics-based cyber security technologies offer significant ad-

vantages in authentication, identification, and access control mech-

anisms. The popularity of biometrics technologies and their world-

wide deployment makes biometric applications and databases natu-

ral targets in cyber attacks on a large scale. Since 1994 [2, 11], there

have been tremendous research and development efforts for creat-

ing secure biometric schemes. In the most general terms, we can

classify biometric template protection methods under three main

categories: biometric cryptosystems (BC), cancelable biometrics

(CB), secure multiparty computation based biometrics (also known

as keyed biometrics) (SC, or KB), and hybrid biometrics (HB).
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In BC and SC (whence in HB), cryptographic functions and trans-

formations are the main tools to create secure templates. By con-

struction, the underlying cryptographic primitives are defined over

some particular discrete domains, and therefore, feature vectors are

supposed to be some binary, or integer-valued vectors. More gener-

ally, a large class of template protection algorithms tend to assume

that feature vectors are integer valued, and the similarity scores are

calculated based on Hamming distance, set difference distance, or

edit distance; see [8, 9]. However, biometric data is generally rep-

resented through real-valued feature vectors as in the case of face

recognition [5, 6, 10] and keystroke dynamics [1, 3, 4, 7]. Therefore,

many of the known secure template constructions, including the

examples given above, would not be immediately applicable when

feature vectors are composed of real numbers.

2 AN ACCURACY-PRESERVING
TRANSFORMATION

In this section, we present our method to extend the domain of

biometric template protection algorithms from integer-valued fea-

ture vectors to real-valued feature vectors. We also derive some

theoretical estimates on the accuracy-preserving properties of our

construction.

Definition 1 (The Scale-then-Round transformation (StRs )).

For a real-valued vector x = (x1,x2, . . . ,xn ), the map StRs : R
n →

Z
n is defined as

StRs (x) = (⌊sx1⌉ , ⌊sx2⌉ , . . . , ⌊sxn⌉)

where s is a positive real number and ⌊·⌉ is the nearest integer function.

LetGenP and ImpP denote the list of genuine and impostor pairs,

respectively. Corresponding to these lists, let GenP′ and ImpP′ de-

note the lists of transformed version ofGenP and ImpP, respectively,

defined as

GenP′ = {(StRs (x), StRs (y)) : (x ,y) ∈ GenP}

ImpP′ = {(StRs (x), StRs (y)) : (x ,y) ∈ ImpP}

Next, we provide some theoretical estimates on the new system’s

False Accept Rate (FAR) and False Reject Rate (FRR) as a function of

the original system’s error rates. Note that, for a distance function d

on Rn and t ∈ R+, we can write down the error rates of the original

and the new system as follows:

FAR (t) =
#{(x ,y) ∈ ImpP : d(x ,y) ≤ t}

#ImpP
,

FRR (t) =
#{(x ,y) ∈ GenP : d(x ,y) > t}

#GenP
,

FAR′ (T ) =
#{(X ,Y ) ∈ ImpP′ : d(X ,Y ) ≤ T }

#ImpP′
,
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Table 1: The FRR and FAR values for the subjects s055 and s049 at three threshold points by computing the MD using original

feature vectors. The transformed feature vectors at EER threshold using the (selected) scalars s = 93 and 3100.

s055 s049

Original Transformed Original Transformed

Threshold tL = 1.177 t = 1.510 tR = 1.843 ⌊93 × t⌉ = 140 tL = 6.387 t = 6.72 tR = 7.053 ⌊93 × t⌉ = 625

FRR 0.095 0.010 0.005 0.010 0.620 0.480 0.255 0.485

FAR 0.008 0.012 0.024 0.012 0.392 0.480 0.584 0.484

Threshold tL = 1.500 t = 1.510 tR = 1.520 ⌊3100 × t⌉ = 4681 tL = 6.71 t = 6.72 tR = 6.73 ⌊3100 × t⌉ = 20832

FRR 0.010 0.010 0.010 0.010 0.485 0.480 0.470 0.480

FAR 0.012 0.012 0.012 0.012 0.480 0.480 0.484 0.484

FRR′ (T ) =
#{(X ,Y ) ∈ ImpP′ : d(X ,Y ) > T }

#ImpP′
.

Our first result is the following theorem that assures the existence

of a scalar s that can be used to obtain a new biometric system that

now takes integer-valued vectors as input, deploys the same d in its

matching algorithm, and runs at false accept rate FAR′ (st) and false

reject rate FRR′ (st) that are arbitrarily close to FAR (t) and FRR (t)

of the original system. We omit the proof due to space constraints.

Theorem 2.1. Let dp be the Minkowski distance defined on Rn ,

and let X = StRs (x), Y = StRs (y) as before. For a given ϵ > 0, if a

scalar s is chosen such that s ≥ n1/p/ϵ , then

FAR (t − ϵ) ≤ FAR′ (st) ≤ FAR (t + ϵ) ,

FRR (t + ϵ) ≤ FRR′ (st) ≤ FRR (t − ϵ) .

3 APPLICATION OF THE NEW
TRANSFORMATION

In this section, we evaluate our theoretical findings over publicly

available keystroke dynamics dataset [7]. Our reasoning for choos-

ing these datasets is that it is widely referenced in the literature,

and the feature vectors are represented as real-valued vectors.

To verify and support the theoretical bounds in Theorem 2.1, we

use Manhattan Distance (MD) to determine the distance between

two biometric feature vectors. After computing the error rates in

the dataset, we select the two subjects that show minimum and

maximum equal error rate (EER). The subject s055 and s049 have

minimum and maximum EER, respectively. We provide the EER

and the threshold values in Table 1. We also provide tL = t − ϵ

and tR = t + ϵ where ϵ is determined according to Theorem 2.1

based on the length of the feature vector and selected scalar. In

the upper half of the table 1, we have tL = t − (31/93) = t − 0.333

and tR = t + (31/93) = t + 0.333 where s = 93 is our scalar. In the

lower half of the table 1, we have tL = t − (31/3100) = t − 0.01

and tR = t + (31/3100) = t + 0.01 where s = 3100 is our scalar.

Furthermore, using the same evaluation technique, we compute

the error rates for s055 and s049 using the transformation StRs on

the feature vectors. The error rates at transformed EER thresholds

with the scalars 93 and 3100 are provided in Table 1. Clearly, all the

computed values agree with the conclusion of Theorem 2.1.

4 CONCLUSION AND FUTUREWORK

We proposed a generic method to extend the domain of biometric

template protection algorithms from integer-valued feature vec-

tors to real-valued feature vectors. We prove that our method is

accuracy-preserving in the sense that the accuracy of the new sys-

tem can be made arbitrarily close to the accuracy of the original

system. This allows real-valued feature vectors to be used as input

to some cryptographic algorithms, whence to enhance the security

of the matching algorithms while preserving the accuracy rates

of the original (non-cryptographic) systems. Therefore, our next

objective is to implement template protection algorithms in combi-

nation with our proposed method over a large class of biometric

data.
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